\(\int \sec (c+d x) \sqrt {a+b \sec (c+d x)} (A+C \sec ^2(c+d x)) \, dx\) [711]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 308 \[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 (a-b) \sqrt {a+b} \left (2 a^2 C-3 b^2 (5 A+3 C)\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^3 d}+\frac {2 (a-b) \sqrt {a+b} (15 A b+2 a C+9 b C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^2 d}-\frac {4 a C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b d}+\frac {2 C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 b d} \]

[Out]

2/15*(a-b)*(2*C*a^2-3*b^2*(5*A+3*C))*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/
2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d+2/15*(a-b)*(15*A*b+2*C*a+
9*C*b)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+
c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d+2/5*C*(a+b*sec(d*x+c))^(3/2)*tan(d*x+c)/b/d-4/15*a*C*(a
+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b/d

Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 308, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {4168, 4087, 4090, 3917, 4089} \[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 (a-b) \sqrt {a+b} \left (2 a^2 C-3 b^2 (5 A+3 C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{15 b^3 d}+\frac {2 (a-b) \sqrt {a+b} (2 a C+15 A b+9 b C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{15 b^2 d}+\frac {2 C \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}-\frac {4 a C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{15 b d} \]

[In]

Int[Sec[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]

[Out]

(2*(a - b)*Sqrt[a + b]*(2*a^2*C - 3*b^2*(5*A + 3*C))*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sq
rt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(15
*b^3*d) + (2*(a - b)*Sqrt[a + b]*(15*A*b + 2*a*C + 9*b*C)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x
]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))]
)/(15*b^2*d) - (4*a*C*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(15*b*d) + (2*C*(a + b*Sec[c + d*x])^(3/2)*Tan[c
+ d*x])/(5*b*d)

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4087

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), Int[Csc[e + f
*x]*(a + b*Csc[e + f*x])^(m - 1)*Simp[b*B*m + a*A*(m + 1) + (a*B*m + A*b*(m + 1))*Csc[e + f*x], x], x], x] /;
FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4168

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(
m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(b*(m + 2))
, Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) - a*C*Csc[e + f*x], x], x], x] /; Fre
eQ[{a, b, e, f, A, C, m}, x] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 b d}+\frac {2 \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (\frac {1}{2} b (5 A+3 C)-a C \sec (c+d x)\right ) \, dx}{5 b} \\ & = -\frac {4 a C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b d}+\frac {2 C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 b d}+\frac {4 \int \frac {\sec (c+d x) \left (\frac {1}{4} a b (15 A+7 C)-\frac {1}{4} \left (2 a^2 C-3 b^2 (5 A+3 C)\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 b} \\ & = -\frac {4 a C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b d}+\frac {2 C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 b d}+\frac {((a-b) (15 A b+2 a C+9 b C)) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 b}+\frac {\left (-2 a^2 C+3 b^2 (5 A+3 C)\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 b} \\ & = \frac {2 (a-b) \sqrt {a+b} \left (2 a^2 C-3 b^2 (5 A+3 C)\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^3 d}+\frac {2 (a-b) \sqrt {a+b} (15 A b+2 a C+9 b C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^2 d}-\frac {4 a C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b d}+\frac {2 C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 b d} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 18.49 (sec) , antiderivative size = 507, normalized size of antiderivative = 1.65 \[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {4 \sqrt {2} \sqrt {\frac {\cos (c+d x)}{(1+\cos (c+d x))^2}} \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \left (\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)\right )^{3/2} \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \left ((a+b) \left (\left (-15 A b^2+2 a^2 C-9 b^2 C\right ) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+b (15 A b-2 a C+9 b C) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )\right ) \left (\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )\right )^{3/2} \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}} \sec (c+d x)-\left (15 A b^2-2 a^2 C+9 b^2 C\right ) \cos (c+d x) (b+a \cos (c+d x)) \sec ^4\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{15 b^2 d \sqrt {\frac {1}{1+\cos (c+d x)}} (b+a \cos (c+d x)) (A+2 C+A \cos (2 c+2 d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )^{3/2} \sec ^{\frac {5}{2}}(c+d x)}+\frac {\cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \left (\frac {4 \left (15 A b^2-2 a^2 C+9 b^2 C\right ) \sin (c+d x)}{15 b^2}+\frac {4 a C \tan (c+d x)}{15 b}+\frac {4}{5} C \sec (c+d x) \tan (c+d x)\right )}{d (A+2 C+A \cos (2 c+2 d x))} \]

[In]

Integrate[Sec[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]

[Out]

(4*Sqrt[2]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])^2]*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*(Cos[(c + d*x)/2]^2*S
ec[c + d*x])^(3/2)*Sqrt[a + b*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2)*((a + b)*((-15*A*b^2 + 2*a^2*C - 9*b^2*C)*E
llipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + b*(15*A*b - 2*a*C + 9*b*C)*EllipticF[ArcSin[Tan[(c + d*x
)/2]], (a - b)/(a + b)])*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(3/2)*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2
)/(a + b)]*Sec[c + d*x] - (15*A*b^2 - 2*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^4*
Tan[(c + d*x)/2]))/(15*b^2*d*Sqrt[(1 + Cos[c + d*x])^(-1)]*(b + a*Cos[c + d*x])*(A + 2*C + A*Cos[2*c + 2*d*x])
*(Sec[(c + d*x)/2]^2)^(3/2)*Sec[c + d*x]^(5/2)) + (Cos[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(A + C*Sec[c + d*x]
^2)*((4*(15*A*b^2 - 2*a^2*C + 9*b^2*C)*Sin[c + d*x])/(15*b^2) + (4*a*C*Tan[c + d*x])/(15*b) + (4*C*Sec[c + d*x
]*Tan[c + d*x])/5))/(d*(A + 2*C + A*Cos[2*c + 2*d*x]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(3048\) vs. \(2(278)=556\).

Time = 17.28 (sec) , antiderivative size = 3049, normalized size of antiderivative = 9.90

method result size
parts \(\text {Expression too large to display}\) \(3049\)
default \(\text {Expression too large to display}\) \(3089\)

[In]

int(sec(d*x+c)*(A+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*A/d*(EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*c
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*cos(d*x+c)^2+EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+
c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b*cos(d*x+c)^2-(cos(d*x+c)/(cos(d*x+c
)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2
))*a*cos(d*x+c)^2-(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(
cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b*cos(d*x+c)^2+2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2
))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*cos(d*x+c)+2*EllipticF(
cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*
x+c)+1))^(1/2)*b*cos(d*x+c)-2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2
)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*cos(d*x+c)-2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+
b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b*cos(d*x+c)+(c
os(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c
),((a-b)/(a+b))^(1/2))*a+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ell
ipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b-(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c)
)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a-(cos(d*x+c)/(cos(d*x+c)+1))^(1/
2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b-cos(
d*x+c)*sin(d*x+c)*a-b*sin(d*x+c))*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)+2/15*C/d/b^2*(a+b*sec
(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)*(4*a*b^2*tan(d*x+c)+9*sin(d*x+c)*cos(d*x+c)*a*b^2-4*EllipticE(c
ot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x
+c)+1))^(1/2)*a^2*b*cos(d*x+c)+9*sin(d*x+c)*b^3+4*a*b^2*sin(d*x+c)+3*b^3*tan(d*x+c)+a^2*b*cos(d*x+c)*sin(d*x+c
)-9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc
(d*x+c),((a-b)/(a+b))^(1/2))*b^3-2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))
^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3+9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1
/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3+18*EllipticE(co
t(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+
c)+1))^(1/2)*a*b^2*cos(d*x+c)+4*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))
/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)-14*EllipticF(cot(d*x+c)-csc(d*x+c),(
(a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*co
s(d*x+c)-2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2
)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2+9*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*
(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^2+2*Ellipti
cF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos
(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2-7*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(
d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^2-2*(1/(a+b)*(b+a*cos(d*x+c))
/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*
a^2*b+9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)
-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*co
s(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)^2+9*EllipticE(cot(d*x+c)-csc(
d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*
b^3*cos(d*x+c)^2-9*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)^2+2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)
*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-7*(1/(a+b)*(b+a*
cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+
b))^(1/2))*a*b^2-4*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)+18*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1
/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)-18*Ellip
ticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(c
os(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)-2*a^3*cos(d*x+c)*sin(d*x+c)-a^2*b*sin(d*x+c)+3*b^3*sec(d*x+c)*tan(d*x+c))

Fricas [F]

\[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right ) \,d x } \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^3 + A*sec(d*x + c))*sqrt(b*sec(d*x + c) + a), x)

Sympy [F]

\[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sqrt {a + b \sec {\left (c + d x \right )}} \sec {\left (c + d x \right )}\, dx \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)**2)*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*sqrt(a + b*sec(c + d*x))*sec(c + d*x), x)

Maxima [F]

\[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right ) \,d x } \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sqrt(b*sec(d*x + c) + a)*sec(d*x + c), x)

Giac [F]

\[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right ) \,d x } \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sqrt(b*sec(d*x + c) + a)*sec(d*x + c), x)

Mupad [F(-1)]

Timed out. \[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{\cos \left (c+d\,x\right )} \,d x \]

[In]

int(((A + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(1/2))/cos(c + d*x),x)

[Out]

int(((A + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(1/2))/cos(c + d*x), x)